Opening up the Interpretation Process in an Open Learner Model

In IJAIED 17 (3): "Special Issue (Part 2) "Open Learner Models: Future Research Directions" "

Publication information

Abstract

Opening a model of the learner is a potentially complex operation. There are many aspects of the learner that can be modelled, and many of these aspects may need to be opened in different ways. In addition, there may be complicated interactions between these aspects which raise questions both about the accuracy of the underlying model and the methods for representing a holistic view of the model. There can also be complex processes involved in inferring the learner's state, and opening up views onto these processes – which leads to the issues that are the main focus of this paper: namely, how can we open up the process of interpreting the learner's behaviour in such a manner that the learner can both understand the process and challenge the interpretation in a meaningful manner. The paper provides a description of the design and implementation of an open learner model (termed the xOLM) which features an approach to breaking free from the limitations of "black box" interpretation. This approach is based on a Toulmin-like argumentation structure together with a form of data fusion based on an adaptation of Dempster-Shafer. However, the approach is not without its problems. The paper ends with a discussion of the possible ways in which open learner models might open up the interpretation process even more effectively.